Keywords: Influenza, Influenza vaccine and Epidemiology

Abstract

Vaccine effectiveness in preventing hospitalizations with influenza. Preliminary results from the Global Influenza Hospital Surveillance Network for the northern hemisphere 2013/14 influenza season using a test-negative design approach.

Joan Puig-Barberà1, Angels Natvidad-Sancho1, Svetlana Trushakova2, Anna Sominina1, Elizaveta Smodritskev1, Meral A. Citak, Selim Badur, Hongjie Yu1, Benjamin J. Cowling1, Ainaña Mra-Iglesias, Lyudmila Kolobukhina3, Lubov Voloshchuk4, Kuba Yurtcu2, Peng Wu5, Elena Britsve5 for the Global Influenza Hospital Surveillance Study Group (GIHSN)

1 Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Valencia, Spain; 2 D.I. Ivanovsky Institute of Virology FGBU "N.F. Gamaleya FRCIEM" Ministry of Health of Russian Federation, Moscow, Russian Federation; 3 Research Institute of Influenza, Saint Petersburg, Russian Federation; 4 National Influenza Reference Laboratory, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; 5 Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China; 6 School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.

Background

This was a multicentric study performed by the Global Influenza Hospital Surveillance Network (GIHSN). From December 2013 to June 2014 influenza-like illness (ILI) admissions were prospectively screened for influenza viruses in 19 hospitals across Russia Federation; Turkey, China and Spain. Assessment of influenza vaccine effectiveness (IVE) evidence was facilitated by reducing the heterogeneity of evaluations across sites through the use of a common, standardized operational protocol.

Global Influenza Hospital Network (GIHSN)

Methods

We followed the test negative-design to estimate IVE. A random effects logistic regression model was fitted with influenza RTPCR results as the outcome and seasonal influenza vaccination status from registry records or recall data as the linear predictor. The P test was used to assess heterogeneity between sites.

Results

Of 4,660 included admissions, 1,018 (22%) were positive for influenza (13% vaccinated) and 3,642 (78%) were negative controls (20% vaccinated).

Influenza A(H3N2) virus comprised 50% of test positive specimens, A(H1N1)pdm09, 33% and B/Yamagata-lineage, 12%.

Moderate vaccine protection was observed overall, with adjusted effectiveness for the 2013/14 of 40% (95%CI 24 to 52).

Adjusted TIV effectiveness in preventing laboratory-confirmed A(H1N1)2009, A(H1N1)pdm09 and B/Yamagata-lineage hospitalizations was 28% (-6 to 51), 38% (15 to 55) and to 61% (5 to 86) respectively.

By age, IVE estimates against A(H1N1) were significantly larger in the elderly (65+ years old, N of 49% (22 to 77) than in younger patients (data not shown), IVE of 22% (-26 to 52) with a P-value for effect modification of age 0.200. Statistical tests for vaccine by site were not significant (P<0.0%).

Conclusion

Influenza vaccine effectiveness in preventing admissions with influenza was low to moderate. While influenza vaccination is to be recommended for preventing influenza related disease, improved vaccines that offer better protection are needed.